
Abstraction

Abstraction is about reducing
complexity or identifying general
principles that can be applied across
situations or problems.

1. Encourage students to focus on the
most important information and
hide unnecessary detail.

2. Provide opportunities for students
to represent problems/phenomena
in ways that simplify it.

3. Encourage students to identify
principles that can be applied
across situations/problems.

Decomposition

Decomposition is about managing
complex tasks or situations by breaking
them down into smaller, more manageable
parts. Students can use decomposition to
approach problems that, at first, may
seems intimidating.

1. Provide opportunities for students
to break down a phenomenon or
object into parts.

2. Choose tasks where students can
break down the problem in
multiple ways.

Pattern

Patterns are everywhere. We see them
every day. You can engage students in
patterning by having them recognize
and form patterns.

1. Ask students to look for and
discuss patterns during activities.

2. Provide opportunities for students
to generate and describe patterns.

Debugging

Debugging is about finding and fixing
errors. Sometimes it is called
troubleshooting.

1. Encourage students to “debug”
when something doesn’t work as
they had expected or planned.

2. Avoid the urge to fix problems for
students. Allow them to reason
through courses of action for
themselves.  

Yadav, A., Larimore, R., Rich, K., Schwarz, C. (2019). Integrating computational thinking in elementary
classrooms: Introducing a toolkit to support teachers. In Proceedings of Society for Information Technology &
Teacher Education International Conference 2019. Chesapeake, VA: AACE.

Questioning for promoting computational thinking in elementary classrooms

Abstraction
1. How can we simplify this problem/task?
2. What information is most important for solving this problem/task?
3. What information can we ignore in solving this problem/task?
4. How can we clearly represent the important information?
5. What lessons can you take away from this problem and apply to other

problems?

Decomposition
1. What details do you notice in this problem, phenomenon, or object?
2. How can you use the details to identify parts of this problem,

phenomenon, or object?
3. What parts are familiar to you? What parts are unfamiliar?
4. What are the different ways you could break down this problem,

phenomenon, or object?
5. Can you break down the parts further into smaller parts?
6. How might breaking down this problem or phenomenon be helpful for

solving or understanding it?

Patterns
1. What similarities or patterns do you notice between the problems,

phenomena, or objects? For example, how many objects are there? What
colors do you see?

2. How can you use the details to identify parts of this problem,
phenomenon, or object?

3. How can you describe the patterns?
4. How could you use the pattern to make predictions or draw conclusions?

Debugging
1. Does the result match what you expected?
2. How can you tell whether or not your plan, model, or solution worked?
3. How can you modify your approach to address the problem?
4. How do you know you have fixed the error?

This work is supported by the National Science Foundation under grant number
1738677. Any opinions, findings, and conclusions or recommendations expressed in
this material are those of the author(s) and do not necessarily reflect the views of the
National Science Foundation

	Abstraction
	Decomposition
	Patterns
	Debugging

